

#### Health Consequences of Psychological Distress in Mid-Life:

#### A Longitudinal Outcome-Wide Analysis of the 1970 British Cohort Study

Martin N Danka<sup>1, 2</sup>

**Collaborators:** Dr Jess K Bone<sup>2</sup>, Prof George B Ploubidis<sup>1</sup>, Dr Richard J Silverwood<sup>1</sup>

CENTRE FOR LONGITUDINAL STUDIES

<sup>1</sup> Centre for Longitudinal Studies, Social Research Institute, UCL
 <sup>2</sup> Social Biobehavioural Research Group, Institute of Epidemiology and Health Care, UCL

# **Psychological distress**

- A general discomforting emotional state (Ridner, 2004).
- Incorporates non-specific symptoms of
  - Psychological stress
  - Depression
  - Anxiety
- Linked to many disease outcomes (Barry et al., 2020).
- Mental health problems cost the UK economy ~4.9% of its GDP (OECD, 2018)





#### Mechanisms



# How can we study consequences to physical health?

• Approach 1: Overall health

**Psychological distress** 

Composite health measure

# How can we study consequences to physical health?

- Approach 1: Overall health
- Approach 2: The 'study per outcome' approach



# How can we study consequences to physical health?

- Approach 1: Overall health
- Approach 2: The 'study per outcome' approach
- Approach 3: The outcome-wide design



open Access

August 2020

Outcome-Wide Longitudinal Designs for Causal Inference: A New Template for Empirical Studies

Tyler J. VanderWeele, Maya B. Mathur, Ying Chen



## Existing OWDs on disease onset

- Most prominent links with hospital admissions for endocrine, muskoskeletal, and circulatory conditions (Frank et al., 2023).
- Several other 'informal' OWDs with varying disease categories (Han et al., 2011; Momen et al., 2020; Patten et al., 2008; Scott et al., 2016).



# Limitations of existing OWDs

- Most of them cross-sectional.
- Lack of explicit causal reasoning.
  - Unclear causal structure.
  - Unclear effects of interest.
  - Selection bias.
  - Other biases.



#### **Reporting of disease outcomes**



# ELSA: More than 50% failed to report stroke, heart attack or cancer (Stoye & Zaranko, 2020).

### Aims

- 1. Estimate the effect of psychological distress on various physical health outcomes in mid-life.
- 2. Compare how the effect of psychological distress varies when considering health outcomes sourced from
  - Self-reports
  - Electronic health records



#### Dataset

- 1970 British Cohort Study
  - ~17,000 individuals born in England, Scotland, and Wales in 1970.
- Hospital Episode Statistics (NHS England)
  - Hospital admissions
  - Outpatient appointments
  - A&E attendance
  - Critical care data





## **Eligibility criteria**

- 1. Member of BCS70
- 2. Eligible for linkage
  - Lived in England during the 'eligibility period'.
  - Defined if true for any sweep between 2000–2012.
- 3. Alive and not emigrated at the end of follow-up
  - 2012 (age 42)



# **Exposure: Psychological distress**

- Age 34 (sweep 2000)
- 9-item Malaise Inventory.
- Previous work on CLS cohorts (Ploubidis et al., 2019; McElroy et al., 2020):
  - Scalar invariance of the 9-item version.
  - Measurement invariance across time, cohorts, and gender.



**UCL** 

| Self-reported outcome                         | % New cases (age 30 $ ightarrow$ 42) | % Prevalence at age 42 |
|-----------------------------------------------|--------------------------------------|------------------------|
| Chronic back issues                           | 14.8                                 | 19.7                   |
| Hayfever/allergic rhinitis                    | 9.0                                  | 21.7                   |
| Conditions of stomach, bowels, or gallbladder | 7.9                                  | 10.7                   |
| Migraine                                      | 7.0                                  | 12.2                   |
| Hypertension                                  | 6.4                                  | 7.6                    |
| Asthma or wheezy bronchitis                   | 4.2                                  | 8.9                    |
| Skin conditions                               | 4.1                                  | 9.9                    |
| Hearing problems                              | 2.8                                  | 4.2                    |
| Kidney or bladder problems                    | 2.6                                  | 3.3                    |
| Eye conditions (not corrected by glasses)     | 2.3                                  | 2.9                    |
| Diabetes                                      | 2.0                                  | 2.6                    |
| Cancer                                        | 1.1                                  | 1.1                    |
| Chronic fatigue syndrome                      | 1.0                                  | 1.2                    |
| Convulsion, fit or epilepsy                   | 0.6                                  | 1.3                    |



## Analysis

- Estimand: Risk ratios.
- Estimator: Modified Poisson regression with robust SE (Zou, 2004).
- Missing data: Multiple imputation
  - Included drivers of attrition in BCS70 (Katsoulis et al., 2024).
  - Also used to handle missing eligibility data (Giganti & Shepherd, 2020).
- Confounding adjustment: Inverse probability of treatment weighting
  - Weights derived via parametric covariate balancing (Fong et al., 2018).

#### **UCL**

# Preliminary results

- Self-reported outcomes
- Pooled across 70 imputed datasets
- Eligible participants: 14,879 to 14,974





# Sensitivity analyses

- Similar results when
  - Winsorising the weights at the 99<sup>th</sup> percentile.
  - Including participants alive and living in England,

Scotland, and Wales at the end of follow-up.



### **Future directions**

- Comparing effects with conditions in the HES data.
- Additional sensitivity checks
  - Adjustment for confounders at baseline.
  - Adjustment for past exposure levels.



### Limitations

- HES datasets do not include primary care data.
- Limited granularity.
- Exploratory nature of OWDs.
- Analytical complexity

# Thank you!

**Email:** martin.danka.21@ucl.ac.uk **Bluesky:** @martindanka.bsky.social

