Introduction to SQL and Databases

Peter Smyth Cathie Marsh Institute

26th March 2020

Overview of Seminar

- What is a Database?
- Different types of databases
- When the desktop isn't enough
- Introducing SQL
- Our database interface
- Other ways of interfacing to a database

What is a Database?

You can call any collection of data a database.

UK Data Service

But somethings generally aren't!

What is a Database

- The data in the database has to be Structured in some way so as to facilitate its retrieval.
- In most circumstances you won't want all of the data.

Different types of databases

- All databases store data
- But not all databases store data in the same way
- Sometimes we don't care how the data is stored
- But sometimes it can effect the
 - Efficiency of our queries
 - And how we write queries

Different types of Databases

- SQL or Relational Databases
 - Consists of tables which are related to each other in a defined way using one or more 'key' fields
 - Uses SQL queries to retrieve the data
- NoSQL SQL Databases
 - Data stored as Collections of Documents.
 - Documents can have complex structures.
 - Different documents in the same collection can have different structures
 - Generally do not use SQL queries to access the data

SQL Table = NoSQL Collection SQL Table row = NoSQL Document

Tables

- Data in relational databases are arranged in tables.
- You can think of these very much like the format you might see in a spreadsheet.
- Rows and columns of data, with each column having its own column-name.
- Internally a database table is not quite the same as a spreadsheet, but as an image of what a table is like, it is perfect.

Tables

1	Α	В	C	D	E	F	G	Н		J
1	agegpt	aprxsocgr	cofbt	econac1t	ethew1t	famcomp	health1	indus1t	marstat1t	numhrs
2	6	4	1	5	1	2	2	2	2	-9
3	4	3	1	1	1	5	1	6	1	4
4	4	4	1	1	1	3	1	11	1	3
5	2	2	1	1	1	3	2	7	1	3
6	5	2	1	1	1	3	1	4	4	3
7	6	3	1	1	1	2	2	2	2	3
8	4	3	1	1	1	5	2	11	3	2
9	1	-9	1	-9	1	3	2	-9	1	-9
10	7	2	1	5	1	2	1	2	2	-9
11	6	4	1	5	1	1	3	5	4	-9
12	3	4	1	1	1	1	3	2	1	3
13	1	-9	1	-9	1	2	1	-9	1	-9
14	2	2	1	1	1	1	1	2	1	3
15	2	2	1	4	1	1	2	-9	1	-9
16	2	4	1	1	1	5	2	4	1	2
17	2	2	1	4	1	1	2	6	1	-9
Ň	i de	censusmic	roteachin	g11ew	\oplus					

Why Relational Database?

- Although it is possible to have a database with only one table, in general a single database will be home to many tables, large and small.
- It is possible that these tables are totally independent of each other but in practice it is unlikely to be the case.

A paper sales receipt

YO	II UR GO	С	1s Sui	t Main nny, Fl	Y N/ Street 3343	ě.	E
SOLITIONER	OPDEN NO.			64	u.		
NA.							
ACO/ESS							
CITY, STATE,	29					-	
80L0 BY -	CASH	cop	DWRD	E ON AC	CE MORE	нтр	PAID OVT
ate	100	DESCRIPT	ION	1 m	PRICE	٨	MOUNT
RECEIVED	D 8Y:				TAX		

Broken down to tables

Using multiple tables

Advantages

- Smaller amounts of data to manipulate
- Security of the data

Disadvantages

- Slower to update (i.e. add new sales receipts)
- More complex queries if data needed from multiple tables

When the Desktop isn't enough

- Databases can be very large GBs, Millions of records
- Too big to store on your desktop
- May not be yours anyway
- You may only be interested in part of it
 - Some tables
 - Parts of some tables
- Fortunately Database systems make it easy to share.

Database environments

- A Database 'System' is not a single program (like Excel)
- There are two main parts:
- The Database Engine
 - This defines the database type
 - It manages the storage of the data
 - It interprets and acts on SQL requests
 - It returns the data from SQL queries
- The User interface
 - How we communicate with the Database engine
 - Can take on many forms
 - All Database systems come with their preferred user interface
 - Usually some kind of GUI (Graphical User interface)

Database environments

You can install the database engine, without installing the GUI

You don't need a GUI, anything that can connect to the database engine will do

Database environments SPSS Some Database ORACLE MySQL SQLite Server Standalone GUI's

- MySQL Workbench
- DB Browser for SQLite
- Dbeaver
- Sophisticated Text editors (VS Code, Atom etc)

When the desktop isn't enough

- The Database engine and the User access programs are separate entities
- They don't have to be on the same machine
- The GUI could be on your desktop/laptop
- The database Engine could be on a far larger machine, it may have 100's of GB of memory

Introducing SQL

- There are two basic types of SQL commands
- DDL statements and DML statements
- DDL Data Definition Language statements are used to Create databases and Tables and generally manage the environment
- DML Data Manipulation Language statement are used to deal with the actual data in the tables.

Introduction to SQL

- Only really interested in DML statements in this Webinar
- And really only one of these.
- DML statements include;
 - Create (Insert)
 - Read (Select)
 - Update and
 - Delete
- Collectively referred to as `CRUD` statements

Introduction to SQL

- We are going to assume that our data is already in table so all we want to do is to Read (or Select) that data in different ways
- So all of our focus from now is on the SELECT statement
- In reality much of your time spent on SQL is in coding SELECT queries.
- SELECT Statements are generally referred to as SQL queries.

The SELECT statement

What can we do in a SELECT query?

- 1. Select specific columns from a table (or tables)
- 2. Select specific rows from a table (or tables)
- 3. Add new columns to the **output** of a query
 - Based on existing columns
 - Based on a variety of builtin function
- 4. Create aggregations from the rows in a table
 - By grouping values in one or more columns
- 5. Produce sorted output based on one or more columns

The Select Query

- Need to know;
- Nothing in a SELECT statement can affect the underlying data in the tables
- The output of a SELECT is always a table
 - Even if there is only one row and one column
- There are various ways of saving the output from a SELECT query
 - As another Table or View
 - Write it to an output (typically csv) file

Select Statement Demo

The rest of this Webinar is devoted to demonstrations.

We will look at a GUI (DB Browser for SQLite)

We will create and run some SELECT queries

The dataset being used

 For the demonstrations we are going to use a dataset from the UKDS

Results per page:		Sort by:	
10	*	Relevance	
SN 7682 2011 Cens	us Microda	ta Individual Safeguarded	ty): England and Wales

The Demos

- Using DB Browser for SQLite
- Using MS Query from Excel

Access from Python Code

import sqlite3
import pandas as pd

con = sqlite3.connect('./SN7613/SN7613.db')

sql = "SELECT * FROM Occupations"

```
cur = con.cursor()
cur.execute(sql)
rows = cur.fetchall()
for row in rows:
    print(row)
```

(1, 'Managers, Directors and Senior Officials')

- (2, 'Professional Occupations')
- (3, 'Associate Professional and Technical Occupations')
- (4, 'Administrative and Secretarial Occupations')
- (5, 'Skilled Trades Occupations')
- (6, 'Caring, Leisure and Other Service Occupations')
- (7, 'Sales and Customer Service Occupations')
- (8, 'Process, Plant and Machine Operatives')
- (9, 'Elementary Occupations')

(-9, 'No code required (under 16/never worked/student/pupil living away)')

Questions

Peter Smyth

Peter.smyth@manchester.ac.uk

ukdataservice.ac.uk/help/

Subscribe to the UK Data Service news list at https://www.jiscmail.ac.uk/cgibin/webadmin?A0=UKDATASERVICE

Follow us on Twitter https://twitter.com/UKDataService or Facebook https://www.facebook.com/UKDataService

